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Abstract
By following the ideas of Emery and Noguera, a recent study revealed the dynamics of the
charge sector of a one-dimensional quarter-filled electronic system with extended Hubbard
interactions to be that of an effective pseudospin transverse-field Ising model (TFIM) in the
strong-coupling limit. With the twin motivations of studying the co-existing charge and spin
order found in strongly correlated chain systems and the effects of interchain couplings, we
investigate the phase diagram of coupled effective (TFIM) systems. A bosonization and
renormalization group (RG) analysis for a two-leg TFIM ladder yields a rich phase diagram
showing Wigner/Peierls charge order and Néel/dimer spin order. In a broad parameter regime,
the orbital antiferromagnetic phase is found to be stable. An intermediate gapless phase of finite
width is found to lie in between two charge-ordered gapped phases. Kosterlitz–Thouless
transitions are found to lead from the gapless phase to either of the charge-ordered phases.
A detailed analysis is also carried out for the dimensional crossover physics when many such
pseudospin systems are coupled to one another. Importantly, the analysis reveals the key role of
critical quantum fluctuations in driving the strong dispersion in the transverse directions, as well
as a T = 0 deconfinement transition. Our work is potentially relevant for a unified description
of a class of strongly correlated, quarter-filled chain and ladder systems.

1. Introduction

Strongly correlated ladder systems are fascinating candidates
for studying the interplay of spin and charge ordering, and
their combined influence on the emergence of novel ground
states [1]. Several recent studies provide experimental
realizations of such systems, exhibiting diverse phenomena
like charge order (CO), antiferromagnetism (AF) and
unconventional superconductivity (uSC) as functions of
suitable control parameters [2, 3]. The existence of several
non-perturbative theoretical techniques in one dimension has
also resulted in the study of the emergence of exotic phases
from instabilities of the high-T Luttinger liquid [4]. Given
that these systems are Mott insulators, longer-range Coulomb

3 Present address: Department of Physics, University of Illinois at Urbana-
Champaign, IL 61801, USA.

interactions are relevant in understanding CO/AF/uSC phases.
Despite some recent work [5], a detailed understanding of the
effects of longer-range interactions in quasi-one-dimensional
(1D) systems is a largely unexplored problem. Further,
attention has mostly focused on studies of models at 1/2-
filling [4].

Here, we study an effective pseudospin model describing
charge degrees of freedom of a 1D 1/4-filled electronic
system. Such an effective model can be derived from an
extended Hubbard model (i.e. with longer-range interactions)
in a number of physically relevant cases. For example, it is
reasonably well established that the structure of the material
Na2V2O5 is essentially that of a system of weakly coupled
quarter-filled two-leg ladders [6–8]. While the spin sector is
effectively quasi-1D with each ladder corresponding to a spin
chain, the charge sector is well described by a 1D system of
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Ising pseudospins in a transverse field. The pseudospin degrees
of freedom correspond to the position of a localized electron on
a given rung of the two-leg ladder.

Another relevant example is the Sr14Cu24O41 system,
a ladder based material well described by a Hubbard-type
fermionic model. Hitherto described by a Hubbard (or
extended Hubbard) model at half-filling, recent experimental
work by Abbamonte et al [9]4 strongly suggests a very
new scenario. Since pure Sr14Cu24O41 is a Mott insulator
with short-ranged antiferromagnetic correlations and a spin
gap, nearest neighbour (nn) Coulomb interactions are in fact
a necessary ingredient of a minimal model. Additionally,
electronic charge–density-wave (e-CDW) order is inferred for
zero doping, providing additional evidence for inclusion of
nn Coulomb interactions into a minimum effective model for
these ladder systems. The e-CDW appears not to be driven
by electron–phonon coupling, as shown by the absence of a
detectable lattice distortion tied to the e-CDW. The relevance
of inter-ladder coupling is also clearly revealed by this study.

Similar arguments hold for the quasi-1D charge transfer
organics, which show e-CDW order in the Mott insulating
phases in the generalized T –P phase diagram (substitution of
different anions in the TMTSF-salts corresponds to varying
chemical pressure) [10]. In studying a 1D 1/4-filled
fermionic model with extended interactions, it has been
suggested [11, 12] that the same Ising pseudospin Hamiltonian
may be a relevant starting point for the study of charge-
order in organics; we will discuss this in some detail at
the start of the following section. Clearly, a half-filled
Hubbard (or extended Hubbard) model is inadequate when
one seeks to understand Mott insulators with e-CDW (along
with AF/dimerized) ground states. A quarter-filled, extended
Hubbard model turns out to be a minimal model capable of
describing such ground states [13, 14].

While the weak coupling limit of the underlying extended
Hubbard model has been recently studied [15, 16], we note
that the real systems under consideration are generically in the
strong coupling regime of the model [6–8]. To the best of
our knowledge, this regime has not been studied in sufficient
detail. Another interest is to investigate the conditions under
which short-coherence length superconductivity can arise by
hole-doping a charge- and antiferromagnetically ordered Mott
insulator. Again, this issue has been studied in sufficient
detail only in the weak coupling limit [17]. Motivated by
the above discussion, we have recently studied a problem of
coupled electronic chains [12], where each chain is described
by an extended Hubbard model with a hopping term (of
strength, t) and nearest-(V1) and next-nearest neighbour (nnn)
(V2) Coulomb interactions in addition to the local Hubbard
(U ) interaction [12]. Further, we studied the strong coupling
regime, where U � V1, V2 � t . In this regime, we derived
an effective transverse-field Ising model (TFIM) in terms of

4 This paper clearly shows the relevance of inter-ladder coupling for the
telephone number compounds. Remarkably, the CO (electronic crystal) is not
accompanied by any detectable structural distortion, indicating that electronic
correlations, rather than electron–phonon coupling, drive the CO in these
systems. This makes it interesting to inquire about the general range of
physical manifestations arising in a suitable model as a function of parameters
of the model.

pseudospins describing the charge degrees of freedom for a
single chain [12]. In this work, our primary aim will be to study
the effects of interchain couplings in this system of chains. As
noted earlier, it has also been shown in [7] that a quarter-filled
two-leg ladder, in which the on-site Coulomb repulsion is the
largest coupling, can be mapped onto the same effective TFIM
Hamiltonian. Our results will, therefore, also be relevant to an
understanding of such ladder systems.

We begin in section 2 by briefly reviewing for the
sake of completeness, the derivation of the effective TFIM
Hamiltonian for the charge sector of a system of 1/4-filled
electronic chains with strong extended Hubbard interactions
and very weak nearest neighbour hopping. In this way, we
verify explicitly the heuristic ideas of Emery and Noguera [11].
We then proceed with the effective pseudospin TFIM model
for the charge degrees of freedom for a single chain [12] and
couple neighbouring chains to describe the physical situations
detailed above. In this way, a system of two effective
pseudospin models coupled to one another is first analysed
in section 2 using abelian bosonization and perturbative
renormalization group methods, to obtain a rich phase diagram
showing different types of CO phases. At the same time,
there remains open the intriguing possibility that some of these
gapped phases may themselves be separated from one another
by non-trivial gapless phases of finite width [18]. We will
encounter an example of this phenomenon in section 2.3. The
transitions from this gapless critical phase to either of the two
charge-ordered phases are found to belong to the Kosterlitz–
Thouless universality class. The question that naturally arises
is whether such gapless, correlated, anistropic metallic phases
survive when many such TFIM systems are coupled to one
another so as to undergo a dimensional crossover. To answer
this question reliably, we treat the inter-TFIM couplings at the
level of the random phase approximation (RPA) [4, 19, 20] in
section 3. The finite T neighbourhood of the quantum critical
point (QCP) is studied in detail. Interestingly, the inter-TFIM
hopping coupling is seen to drive the system away from a
gapped phase at T = 0 to a gapless one at the QCP: critical
quantum fluctuations drive the system through a deconfinement
transition together with a dimensional crossover. In section 4,
we present a comparison of our findings with some recent
numerical works. Finally, we conclude in section 5.

2. Two-leg coupled TFIM ladder model

We begin with the Hamiltonian for a spin chain system

H = −
∑

n

[t (Sx
n Sx

n+1 + Sy
n Sy

n+1)+ V Sz
n Sz

n+1

+ PSz
n Sz

n+2 + hSz
n] (1)

where Sx
n , Sy

n and Sz
n are spin-1/2 operators. The couplings

(t, V , P) > 0 are the nearest neighbour (nn) XY, the nearest
neighbour Ising and the next nearest neighbour (nnn) Ising
couplings respectively and h is the external magnetic field.
For h = 0, this Hamiltonian can be derived via a Jordan–
Wigner transformation on the charge degrees of freedom of a
1/4-filled extended Hubbard model of electrons on a 1D lattice
in the strong-coupling limit: the on-site Hubbard interaction
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U → ∞, while the nn (V ) and nnn (P) density–density
interaction couplings and the nn electron hopping (t) are all
taken to be finite [12]

H =
∑

n

[
− t

2
(c†

i ci+1 + h.c.)+ V ni ni+1 + Pni ni+2

]
. (2)

We study the problem in the limit of strong-coupling where
V , P � t (but where (V − 2P) ∼ 2t) [12].

Let us begin by studying the case of t = 0 [11] (we will be
studying equation (1) for the case of h = 0 in all that follows).
It is easy to see that for the case of V > 2P , the ground state of
the system is given by a Néel-ordered antiferromagnetic (AF)
state with two degenerate ground states given by

|AFGS1〉 = | · · · + − + − + − + − · · ·〉
|AFGS2〉 = | · · · − + − + − + − + · · ·〉 (3)

where we signify Sz
n = 1/2,−1/2 by + and − respectively

and we have explicitly shown the spin configuration in the
site numbers −3 � n � 4 in the ground states. In the
original electronic Hamiltonian equation (2), this AF order
corresponds to a Wigner charge-ordering (CO) in the ground
state. Similarly, for the case of V < 2P , the ground state of
the system is given by a dimer-ordered (2, 2) state [11] with
four degenerate ground states given by

|22GS1〉 = | · · · − + + − − + + − · · ·〉
|22GS2〉 = | · · · − − + + − − + + · · ·〉
|22GS3〉 = | · · · + − − + + − − + · · ·〉
|22GS4〉 = | · · · + + − − + + − − · · ·〉

(4)

where we signify Sz
n = 1/2,−1/2 by + and − respectively

and we have explicitly shown the spin configuration in the
site numbers −2 � n � 5 in the ground states. In the
original electronic Hamiltonian equation (2), this (2, 2) order
corresponds to a Peierls CO in the ground state.

The same conclusions for the various ground states of the
spin Hamiltonian with t = 0 were, in fact, first reached by
Emery and Noguera [11]. These authors then reached, through
a series of heuristic arguments, the transverse-field Ising model
(TFIM) in one dimension as an effective model of the system
for the case of small t . In what follows, we provide an explicit
derivation of their heuristic conjecture. At the same time,
it is important to note that Emery and Noguera [11] were,
through a careful numerical investigation, able to substantiate
their conjecture. Further, similar methods to those outlined in
the remainder of this section have been adopted by the authors
of [6, 7] in deriving effective Hamiltonians very similar to
the 1D TFIM for related strongly correlated chain and ladder
systems. Before proceeding with the derivation, we recount
briefly the heuristic arguments of Emery and Noguera [11].
Starting with one of the (2, 2) ground states of the spin
Hamiltonian for the case of t = 0, Emery and Noguera paired
spins into antiparallel pairs and then introduced pseudospins τ
such that τ z = 1 for every (+,−) configuration and τ z = −1
for every (−,+) configuration. Then, by noting that (a) any
one of the four (2, 2) ground states were antiferromagnetically

ordered in the τ z and had a partner obtained by displacement
of the state by one bond, and (b) at small and finite t , the XY
terms can only flip the τ z on any bond, they concluded that the
Hamiltonian reduced effectively to that of the 1D transverse-
field quantum Ising model. As stated above, these heuristic
arguments were then verified by the authors by carrying out a
careful numerical investigation. As a formal derivation of this
conjecture has never been presented, we now fill this lacunae.

Let us now proceed with our derivation. First, we consider
the effect of the XY terms in the Hamiltonian (1) on these
ground states. Let us start with noting the effect of an XY
term on a single nn spin pair on the four degenerate (2, 2)
ground states; for purposes of brevity, we will denote the entire
t (Sx

n Sx
n+1 + Sny Sy

n+1) term simply as tn,n+1. Thus,

t0,1|22GS1〉 = t0,1| · · · + − · · ·〉 = t

2
| · · · − + · · ·〉

t0,1|22GS2〉 = t0,1| · · · + + · · ·〉 = 0

t0,1|22GS3〉 = t0,1| · · · − + · · ·〉 = t

2
| · · · + − · · ·〉

t0,1|22GS1〉 = t0,1| · · · − − · · ·〉 = 0

t−1,0|22GS1〉 = t−1,0| · · · + + · · ·〉 = 0

t−1,0|22GS2〉 = t−1,0| · · · − + · · ·〉 = t

2
| · · · + − · · ·〉

t−1,0|22GS3〉 = t−1,0| · · · − − · · ·〉 = 0

t−1,0|22GS4〉 = t−1,0| · · · + − · · ·〉 = t

2
| · · · − + · · ·〉.

(5)

In a similar manner, we study the action of the operator
tn,n+1 on the two degenerate ground states of the AF ordered
configuration as

t0,1|AFGS1〉 = t0,1| · · · + − · · ·〉 = t

2
| · · · − + · · ·〉

t0,1|AFGS2〉 = t0,1| · · · − + · · ·〉 = t

2
| · · · + − · · ·〉

t−1,0|AFGS1〉 = t−1,0| · · · − + · · ·〉 = t

2
| · · · + − · · ·〉

t−1,0|AFGS2〉 = t−1,0| · · · + − · · ·〉 = t

2
| · · · − + · · ·〉.

(6)

Defining bond-pseudospins τ z
i = (Sz

i − Sz
i−1)/2, τ+

i =
S+

i S−
i−1 and τ−

i = S−
i S+

i−1 (which can be rewritten in
terms of bond-fermionic operators in the original electronic
Hamiltonian equation (2) as τ z

i = (ni − ni−1)/2, τ+
i =

c†
i ci−1 and τ−

i = ci c
†
i−1 respectively), we can write the four

degenerate ground states of the (2, 2) ordered configuration in
terms of these bond-pseudospins as

|22GS1〉 = | · · · 0 − 0 + 0 · · ·〉
|22GS2〉 = | · · · + 0 − 0 + · · ·〉
|22GS3〉 = | · · · 0 + 0 − 0 · · ·〉

|22GS4〉 = | · · · − 0 + 0 − · · ·〉,

(7)

where we have denoted τ z
n = 1/2 as + and τ z

n = −1/2 as
− and have explicitly shown the pseudospin configurations on

3



J. Phys.: Condens. Matter 20 (2008) 235213 S Lal and M S Laad

the bond numbers 0 � n � 4. We can clearly see from
equation (7) that these four ground states break up into two
pairs of doubly degenerate (AF) orderings of the pseudospins
defined on the odd bonds (|22GS1〉 and |22GS3〉) and on
the even bonds (|22GS2〉 and |22GS4〉) respectively. It is
also simple to see from equation (5) that the action of the
operator tn−1,n (for the nearest neighbour pair of sites given by
(n − 1, n)) on these four ground states is to flip a pseudospin
defined on the bond n (lying in between the pair of sites
(n − 1, n)) or to have no effect at all.

We can now similarly see that the two degenerate ground
states of the AF ordered configuration can be written in terms
of the bond-pseudospins defined above as

|AFGS1〉 = | · · · + − + − + · · ·〉
|AFGS2〉 = | · · · − + − + − · · ·〉 (8)

where we have explicitly shown the pseudospin configurations
on the bond numbers 0 � n � 4. From equation (8), we see
that the two degenerate ground states have antiferromagnetic
ordering of pseudospins on nn bonds; this can equally
well be understood in terms of the ferromagnetic ordering
of pseudospins on the odd bonds and on the even bonds
separately. Further, from equation (6), we can see that the
action of the operator tn−1,n (for the nearest neighbour pair of
sites given by (n − 1, n)) on these two ground states is again
to flip a pseudospin defined on the odd (even) bond n (lying
in between the pair of sites (n − 1, n)) against a background
of ferromagnetically ordered configurations of pseudospins
defined on the odd (even) bonds.

Thus, we can model these pseudospin-ordered ground
states (7), (8) as well as all possible pseudospin-flip excitations
above them (as given by action of operators of the type tn−1,n

(5), (6)) with the effective Hamiltonian [12]

H = −
∑

n∈odd

[2tτ x
n + (V − 2P)τ z

n τ
z
n+2]

−
∑

n∈even

[2tτ x
n + (V − 2P)τ z

n τ
z
n+2]

=
∑

n

[2tτ x
n + (V − 2P)τ z

n τ
z
n+2] , (9)

where n is the bond index.
This is just the Ising model in a transverse field, which

is exactly solvable [21, 22] and has been studied extensively
in one dimension [1, 23]. If (V − 2P) > 0, the ground
state is ferromagnetically ordered in τ z , i.e. it corresponds to
a Wigner CDW. For (V − 2P) < 0, the Peierls dimer order
results in the ground state. At (V − 2P) < 2t , the quantum
disordered phase has short-ranged pseudospin correlations,
and is a charge ‘valence-bond’ liquid. The quantum critical
point at (V − 2P) = 2t separating these phases is a
deconfined phase with gapless pseudospin (τ ) excitations, and
power-law fall-off in the pseudospin–pseudospin correlation
functions. Correspondingly, the density–density correlation
function has a power-law singular behaviour at low energy,
with an exponent α = 1/4 characteristic of the 2D Ising model
at criticality. The gap in the pseudospin spectrum on either side
of the critical point is given by�τ = 2|V − 2P − 2t|. Further,
the quantum critical behaviour extends to temperatures as high

as T ∼ �τ/2 [24] and undergoes finite-temperature crossovers
to the two gapped phases at T ∼ |�τ |. The dynamics of
the spin sector of a 1/4-filled electronic system in the limit
of strong correlations was also studied in [12]; we restrict
ourselves to a few brief remarks on the spin sector in this work
and direct the reader to [12] for more details. Henceforth, we
will focus primarily on the effects of interchain couplings on
the charge sector of such chain systems.

2.1. Bosonization and RG analysis

Thus, we now proceed with the effective pseudospin
Hamiltonian for the charge sector

H chain = −
∑

j

[2t τ x
j + (V − 2P) τ z

j τ
z
j+1] (10)

where the Ising pseudospin coupling V − 2P has been
replaced by V for convenience in all that follows. Note
that since the effective Hamiltonian (9) involves couplings
between only the nearest neighbours in either the odd or
even sublattices respectively, the site index j in equation (10)
is taken as belonging to a particular sublattice and the sum
over the two sublattices is then taken separately. While
selecting the relevant interchain couplings to consider, it is
natural to return to the original electronic problem. Keeping
in mind the fact that the single-particle interchain electron
transfer process is renormalization group (RG) irrelevant for
sufficiently large and extended electronic interactions [4], we
note that two-particle interchain density–density couplings as
well as electron transfer processes can still be very important.
Therefore, by first rotating the pseudospin axis τ x →
τ z , τ z → −τ x , we introduce a bond-fermion repulsion
U⊥

∑
i,a,b 	=a(ni,a − ni+1,a)(ni,b − ni+1,b) as well as a bond-

fermion transfer term t⊥
∑

i,a,b 	=a(c
†
i,a,↑ci+1,a,↑c†

i,b,↓ci+1,b,↓ +
h.c.) between two such chain systems described by the
indices (a, b). Further, from the explicit construction of
these terms, it is also clear that they connect both the nearest
neighbour as well as next nearest neighbour sites connecting
the two neighbouring chains in the original electronic problem.
Recalling the relations between the pseudospins and the bond-
fermions in the original electronic model given earlier below
equation (6), we can write the effective Hamiltonian for the
charge sector of the coupled system in terms of a pseudospin
ladder model

H = −
∑

j,a

[2t τ z
j,a + V τ x

j,aτ
x
j+1,a]

−
∑

j,a,b 	=a

[U⊥τ z
j,aτ

z
j,b + t⊥ (τ x

j,aτ
x
j,b + τ

y
j,aτ

y
j,b)] , (11)

where a, b = 1, 2 is the chain index. Having explored the
strong-coupling limit of U⊥ � V in an earlier work [12], we
will explore the weak-coupling scenario of U⊥ � V below.
We note that in the spin sector, coupling between the two
systems leads to a S = 1/2 Heisenberg ladder-type model, and
this has been studied extensively by several authors [4, 18].
Interchain spin coupling turns out to be relevant, opening up
a spin gap: in this case two possibilities are known to result.
The ground state has either short-ranged antiferromagnetic

4
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correlations (RVB) with no magnetic long-range order (LRO),
or it spontaneously breaks translation symmetry, leading to
dimerization.

We now return to our analysis of the charge sector.
To begin, we introduce fermionic operators ψ j,a on each
chain via a Jordan–Wigner transformation of the pseudospins.
We will then proceed to bosonize the theory. During this
procedure, one has to take care that the spin commutation
relations are maintained, i.e. the new fermionic operators have
anticommutation relations on each chain but commute between
chains. It can indeed be checked that the bosonized expression
for the various pseudospin operators satisfy the required spin
commutation relations [4, 25]. In terms of these fermions,
upon denoting the chains as a, b = ↑,↓, we find an effective
Hamiltonian for the 1D Hubbard model with an equal-spin
pairing term and an on-site spin-flip term

H = − t̃

2

∑

j,a

(ψ
†
j,aψ j+1,a + h.c.)− t⊥

2

∑

j

(ψ
†
j,aψ j,b + h.c.)

+ Ũ
∑

j

n j,↑n j,↓ + Ṽ
∑

j,a

(ψ
†
j,aψ

†
j+1,a + h.c)

+ μ
∑

j,a

n j,a (12)

where t̃ and t⊥ are the in-chain and interchain hopping
parameters respectively, μ = −2t the chemical potential of the
effective model (and unrelated to the filling of the underlying
electronic model), Ũ = −U⊥ the on-site (Hubbard) interaction
coupling and Ṽ = V/4 the pairing strength. Note that while
we treat the parameters t̃ and Ṽ as independent parameters for
the sake of generality, t̃ = Ṽ = V in our original model (11).
Bosonizing in the usual way (in terms of the usual charge
ρ = ↑ + ↓ and spin σ = ↑ − ↓ variables), we obtain the
effective low-energy bosonic Hamiltonian

H = 1

2π

∫
dx

[
vρKρ(π	ρ(x))

2 + vρ

Kρ

(∂xφρ(x))
2

]

+ 1

2π

∫
dx

[
vσ Kσ (π	σ (x))

2 + vσ

Kσ

(∂xφσ (x))
2

]

+ Uσ

2πα

∫
dx cos(

√
8φσ )+ Uρ

2πα

∫
dx cos(

√
8φρ)

+ Ṽ

2πα

∫
dx cos(

√
2θρ) cos(

√
2θσ )

−
√

2μ

π

∫
dx∂xφρ(x)

+ t⊥
πα

∫
dx cos(

√
2φσ ) cos(

√
2θσ )

+ V1

πα

∫
dx cos(

√
8θσ )

+ V2

πα

∫
dx cos(

√
2φσ ) cos(

√
2θρ) (13)

where 	ρ = 1
π
∂xθρ , 	σ = 1

π
∂xθσ , vρKρ = vF = vσ Kσ ,

vρ/Kρ = vF (1 + Ũ
πvF
) and vσ /Kσ = vF (1 − Ũ

πvF
). Among

the various cosine potentials, we have the usual spin-flip
backscattering cos(

√
8φσ ) and Umklapp cos(

√
8φρ) terms as

well as the triplet superconducting cos(
√

2θρ) cos(
√

2θσ ) term.

The chemical potential term can be absorbed by performing

the shift φρ → φρ +
√

2Kρμ

vρ
x . The cosine potentials with

couplings V1 and V2 are generated under RG by the t⊥ and
Ṽ terms. Using the operator product expansion [4], we find the
RG equations for the various couplings to second order as

dUρ

dl
= (

2 − 2Kρ

)
Uρ

dUσ

dl
= (2 − 2Kσ )Uσ −

(
1

Kσ

− Kσ

)
t2
⊥

dṼ

dl
=

(
2 − 1

2

(
1

Kσ

+ 1

Kρ

))
Ṽ − Kσ t⊥V2

dt⊥
dl

=
(

2 − 1

2

(
Kσ + 1

Kσ

))
t⊥ − Ṽ V2

Kρ

−
(

KσUσ + V1

Kσ

)
2t⊥

dV1

dl
=

(
2 − 2

Kσ

)
V1 +

(
1

Kσ

− Kσ

)
t2
⊥

dV2

dl
=

(
2 − 1

2

(
Kσ + 1

Kρ

))
V2 − t⊥Ṽ

Kσ

,

(14)
where all couplings have been normalized with respect to
the quantity 2πvF , and we have set 2πvF = 1 for
notational simplicity. The RG equations for the two interaction
parameters (Kρ, Kσ ), the two velocities (vρ, vσ ) as well as the
parameter δ = Kρμ/vρ are found to be

dKσ

dl
= −K 2

σ (U
2
σ + V 2

2 + t2
⊥)+ V 2

1 + t2
⊥ + Ṽ 2

dKρ

dl
= −K 2

ρU 2
ρ J0(δ(l)α)+ V 2

2 + Ṽ 2

dvσ
dl

= −vσ Kσ (U
2
σ + V 2

2 + t2
⊥)+ vσ

Kσ

(V 2
1 + t2

⊥ + Ṽ 2)

dvρ
dl

= −vρKρU 2
ρ J2(δ(l)α) + vρ

Kρ

(V 2
2 + Ṽ 2)

dδ

dl
= δ(l)− U 2

ρ J1(δ(l)α) ,

(15)
where δ(l) = δel , α is a short-distance cut-off like the
lattice spacing and J0(x) and J1(x) are Bessel functions [4].
The various second-order correction terms arise from
(∂xφρ/σ )

2 and (∂xθρ/σ )
2, which are generated under the

RG transformations [4, 26, 27]. As discussed in [27],
the competing influences of the various couplings on the
renormalizations of the interaction parameters (Kρ, Kσ ) can
cause their values to either grow or decrease. In turn,
this affects drastically the scaling dimensions of the various
couplings and can lead to the system undergoing a transition
from one type of ordered phase (in which a particular coupling
grows the fastest to strong-coupling) to another, with the
passage being through a gapless (critical) phase. The existence
of such a critical (gapless) region in coupling space, lying
in between two ordered (massive) phases, is revealed in a
subsequent analysis. Further, such a deconfined phase can be
thought of as the quasi-1D analogue of that analysed in detail
later via an RPA treatment when dealing with many coupled
chains.
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Figure 1. The RG phase diagram in the (Kσ , Kρ) plane for repulsive
interchain interactions (U⊥ < 0). The three regions Kρ < (1/4
(1/Kσ + 1/Kρ), 1/4 (Kσ + 1/Kσ )), 1/Kσ > Kρ > 1/4 (1/Kσ

+ 1/Kρ) and Kρ > (1/Kσ , 1/4 (Kσ + 1/Kσ )) give the values of
(Kσ , Kρ) for which the couplings Uρ , t⊥ and Ṽ respectively are the
fastest to grow under RG.

2.2. Phase diagram for repulsive inter-TFIM coupling

For repulsive interactions (U⊥ > 0) between the bond-
fermions, the σ sector is massless and Kσ flows under RG to
the fixed point value K ∗

σ � 1 and 1/2 � Kρ � 1. At 1/2-
filling (for the bond-fermions), the couplings Uρ , Ṽ , t⊥, V1

and V2 are all relevant while Uσ is irrelevant. The competition
to reach strong-coupling first is, however, mainly between Uρ ,
t⊥ and Ṽ . We show below the phase diagram as derived from
this analysis.

In the phase diagram in figure 1, the three lines with
intercepts at (Kσ = 1, Kρ = 1), (Kσ = 1, Kρ = 0.64)
and (Kσ = 1, Kρ = 1/2) are the relations Kσ = 1/Kρ ,
Kρ = 1/4(1/Kσ + 1/Kρ) and Kρ = 1/4(Kσ + 1/Kσ )

respectively. In all that follows, we use the notation a > (b, c)
to mean that the quantity a is greater than both the quantities b
and c. The regions Kρ < (1/4(1/Kσ + 1/Kρ), 1/4(Kσ +
1/Kσ )), 1/Kσ > Kρ > 1/4(1/Kσ + 1/Kρ) and Kρ >

(1/Kσ , 1/4(Kσ + 1/Kσ )) signify the values of Kρ and Kσ

for which Uρ (in-chain Wigner charge-ordered Mott insulator),
t⊥ and Ṽ (in-chain Peierls charge-ordered Mott insulator of
preformed bond-fermion pairs) respectively are the fastest to
reach strong-coupling. The RG equations for the coupling
Uρ , the interaction parameter Kρ and the incommensuration
parameter δ are familiar from the literature on commensurate–
incommensurate transitions [28]. For temperatures T �
Kρμ, the finite chemical potential (arising from the non-zero
transverse-field strength t) is unable to quench the Umklapp
scattering processes, allowing for the growth of Uρ to strong-
coupling. For T � Kρμ, the finite chemical potential cuts-off
the RG flow of Uρ , freezing the Umklapp scattering processes.

For the case of t⊥ being the most relevant coupling, we
find our RG equations to be a non-trivial generalization of
those derived in [29] for the model of two coupled spinless
fermion chains without the intrachain Ṽ pairing term. The
resulting picture then describes strong interchain two-particle
correlations between bond-fermions sharing a rung. Following
the analysis outlined in [29, 18], we conclude that this
phase is a novel insulating phase characterized by a mass
gap and delocalized bond-fermions on rungs, resembling the

orbital antiferromagnetic ground state found in the spinless
two-chain problem. This matches our finding of an orbital
antiferromagnetic ground state in the strongly coupled ladder
with dominant antiferromagnetic rung-couplings in an earlier
work [12]. Away from 1/2-filling (for the bond-fermions),
the competition is mainly between t⊥ and Ṽ . For Ṽ
reaching strong-coupling ahead of t⊥, the system is in a
channel triplet-spin singlet superconducting phase with mobile
intrachain hole pairs; for t⊥ reaching strong-coupling ahead
of Ṽ , we are currently unable to describe in more detail the
dominant instability away from the orbital antiferromagnetism-
like insulating phase.

2.3. Gapless phase driven by inter-TFIM hopping

Interestingly, while studies of ladder models have shown a
plethora of charge and spin-ordered gapped phases [4, 15, 16],
there remains the intriguing possibility that some of these
gapped phases may themselves be separated from one another
by non-trivial gapless phases of finite width [18]. In what
follows, we provide an explicit realization of this scenario.
The RG equations (14) and (15) reveal the existence of a non-
trivial fixed point (FP) for any value of (Kρ, Kσ ) lying in the
ranges 1/2 < Kρ < 1, 1 < Kσ < 2 + √

3 and which is
perturbatively accessible from the trivial weak-coupling FP.
While the perturbative RG is known to have its limitations
in such cases, the finding of a non-trivial FP is nevertheless
reliable as long as the values of the various couplings at the
FP are small (as indicated above). We note that a similar
non-trivial fixed point was found in a study of the anisotropic
Heisenberg spin-1/2 chain in a magnetic field [30], where the
authors derived a set of RG equations which were very similar
to those found in [29]. Here, the non-trivial FP is given by

t∗
⊥ = √

ab, V ∗
1 = K ∗

σ + 1

2
t∗
⊥

2
, U∗

σ = V ∗
1

2K ∗
σ

Ṽ ∗ =
√

aK ∗
ρ(cK ∗

σ − (K ∗
σ + 1)2ab), V ∗

2 =
√

b

a

Ṽ ∗

K ∗
σ
(16)

where a = 2 − (K ∗
σ + 1/K ∗

ρ)/2 , b = 2 − (1/K ∗
σ + 1/K ∗

ρ)/2
and c = 2 − (K ∗

σ + 1/K ∗
σ )/2 . Further, we can safely make

the approximation of the renormalizations of Kρ and Kσ being
small at this non-trivial FP [30]. The system is gapless at
this non-trivial FP as well as at points which flow to it. The
trivial FP has six unstable directions (Uρ, Ṽ , t⊥, V1, V2 and δ),
one stable direction (Uσ ) and two marginal directions (Kρ

and Kσ ). The non-trivial FP has five unstable directions, two
stable directions and two marginal directions. The presence
of the two stable directions at the non-trivial FP indicates the
existence of a two-dimensional surface of gapless theories in
the five-dimensional (Uσ , Ṽ , t⊥, V1, V2) coupling space. This
gapless phase is the analogue of the ‘Floating Phase’ found in
the phase diagram of the 1D axial nnn Ising model [30]. We
present in figure 2 below an RG flow phase diagram which is
projected onto the (V1, t⊥) plane (a similar RG flow diagram
is found for the case of the anisotropic Heisenberg model in
a magnetic field h [30] in the (a, h) plane, where a is the
anisotropy parameter).
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Figure 2. The RG phase diagram in the (V1, t⊥) plane. The thick line
characterizes the set of points which flow to the intermediate fixed
point (V ∗

1 , t∗
⊥) shown by the filled circle. The thin lines show all RG

flows which flow towards strong-coupling in the two phases I and II,
characterized by the relevant couplings Ṽ and t⊥ respectively.

The regions I and II characterize all RG flows which do
not flow to the intermediate FP at (V ∗

1 , t∗
⊥). The transitions

from the non-trivial FP towards either of phases I and II
fall under the universality class of the Kosterlitz–Thouless
type [30]. In region I, V1 flows to strong-coupling while t⊥
decays; for 1/2 < Kρ < 1 and Kσ > 1, we know from
the above discussion that in this region, the coupling Ṽ will
reach strong-coupling first. In region II, both t⊥ and V1 grow
under RG, with the coupling t⊥ being the first to reach strong-
coupling. Thus, the RG trajectory leading to the intermediate
fixed point represents a gapless phase separating the two
gapped, charge-ordered phases I and II characterized by the
relevant couplings Ṽ and t⊥ respectively. Nonperturbative
insight on such critical phases is also gained in section 4, when
we treat the case of many such TFIM systems coupled to one
another using the RPA method.

2.4. Phase diagram for attractive inter-TFIM coupling

For attractive interactions (U⊥ < 0) between the bond-
fermions, we can carry out a similar analysis. In this case,
we can see that Kρ > 1 while Kσ < 1. Then, from the RG
equations given above, we can see that the Umklapp couplings
Uρ and V1 are irrelevant while the couplings t⊥, Uσ , Ṽ and V2

are relevant. The competition to reach strong-coupling first is,
however, mainly between Uσ , t⊥ and Ṽ . We show below the
phase diagram at 1/2-filling for the bond-fermions as derived
from this analysis.

In the phase diagram in figure 3, the three lines with
intercepts at (Kρ = 1, Kσ = 1), (Kρ = 1, Kσ = 0.64) and
(Kρ = 1, Kσ = 1/

√
3) are the relations Kσ = 1/Kρ , Kσ =

1/4(1/Kσ +1/Kρ) and Kσ = 1/
√

3 respectively. The regions
Kσ < (1/4(1/Kσ + 1/Kρ), 1/

√
3), 1/Kρ > Kσ > 1/

√
3

and Kσ > (1/Kρ, 1/4(1/Kρ + 1/Kσ )) signify the values of
Kρ and Kσ for which Uσ (rung-dimer insulator with in-chain

Figure 3. The RG phase diagram in the (Kρ, Kσ ) plane for attractive
interchain interactions (U⊥ > 0). The three regions Kσ < (1/4
(1/Kσ + 1/Kρ), 1/

√
3), 1/Kρ > Kσ > 1/

√
3 and Kσ > (1/Kρ,

1/4(1/Kρ + 1/Kσ )) give the values of (Kσ , Kρ) for which the
couplings Uσ , t⊥ and Ṽ respectively are the fastest to grow
under RG.

Wigner charge-ordering), t⊥ and Ṽ (insulator with in-chain
dimers and Peierls charge-ordering) respectively are the fastest
to reach strong-coupling. This matches our finding of a ground
state with in-chain Wigner charge order and rung-dimers in
the strongly coupled ladder with large ferromagnetic rung-
couplings in an earlier work [12]. Away from 1/2-filling (for
the bond-fermions), depending on which of the three couplings
t⊥, Ṽ and Uσ is the first to reach strong-coupling, the system
exists either as a superconductor with intrachain hole pairs
(Ṽ ) or a superconductor with rung-singlet hole pairs (Uσ ) or
a phase reached by following the dominant instability away
from the orbital antiferromagnetism-like insulating phase (t⊥)
but which we are currently unable to describe in greater detail.

3. Coupled TFIM systems: quantum criticality,
dimensional crossover and deconfinement

Having studied the rich phase diagram of a two-leg coupled
TFIM system in the preceding section in considerable detail,
we now proceed to investigate the case when many such
TFIM systems are coupled to one another. This is done
with an effort towards gaining an understanding of how
such coupled systems undergo a dimensional crossover from
nearly isolated quasi-1D TIFM systems to an anisotropic
strongly coupled system in higher dimensions. Dimensional
crossover in coupled spin systems has been studied using RG
arguments [31, 4] and the RPA for Ising chains [32, 19],
Heisenberg chains [20, 33, 4] and ladders in a magnetic
field [34] and ladders with frustration [35]. Having used
perturbative RG arguments in exploring the phase diagram of
the two-leg system earlier, we now employ the RPA method
to study the passage to higher dimensionality. This is in
keeping with the fact that dimensional crossover is essentially
a nonperturbative phenomenon [4]. At the same time, while
the mean-field-like approach of RPA is exact only in infinite
dimensions (i.e. infinite coordination number), its application
to the physics of coupled quasi-1D spin systems for small
coordination numbers (i.e. lower dimensions) has met with
success [36, 37]. It is also worth noting that while a

7
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naive mean-field treatment of single-particle hopping between
fermionic chains is not possible as a single fermion operator
has no well-defined classical limit [4], we are able to treat
two-particle hopping processes between our underlying chain
systems [12] (or, ladder systems [7, 6, 8]) via RPA by working
with an effective theory in terms of pseudospins (as evidenced
by the inter-chain bond-fermion hopping processes studied
earlier for the case of the two-leg ladder). This is justified
because the presence of the large on-site Hubbard coupling
in our underlying model makes the single-particle hopping
irrelevant (in an RG sense) while two-particle processes
(including hopping terms) can be crucial in determining the
phase diagram [4]. A full treatment including single-particle
hopping will require using chain-dynamical mean-field theory
(c-DMFT) [38] and will be the focus of a future work. In
what follows, we will follow instead the RPA method outlined
in [19].

We treat the dynamics of the coupled spin system for the
two inter-TFIM couplings, U⊥ and t⊥, in equation (11) given
above using the RPA method in turn. Beginning with the
coupling t⊥, this method involves computing the dynamical
spin susceptibility χ of the coupled system in the disordered
phase as

χ(ω, k, �k⊥) = [χ−1
1D (ω, k)− t⊥(�k⊥)]−1 (17)

in terms of the frequency ω, the longitudinal and transverse
wavevectors k and �k⊥ respectively. χ1D is the dynamical
spin susceptibility of a single TFIM system, to be calculated
assuming incipient order along the τ x direction in pseudospin
space

χ1D(ω, k) = −i
∑

n

∫ ∞

0
dt ei(ωt−kn)〈[τ x(t, n), τ x(0, 0)]〉

(18)
and the transverse coupling t⊥(�k⊥) ∼ z⊥t⊥(�k⊥ = 0), for each
TFIM system having a coordination number of z⊥. Then, a
divergence in the dynamical pseudospin correlation function
χ(ω, k, �k⊥) signifies an instability towards the formation of
an ordered state. However, before setting out with the
calculations, it is worth pausing to consider first the likely
effects of a transverse coupling like t⊥. As discussed earlier,
the phase diagram at T = 0 and t⊥ = 0 is simple, with an
ordered phase for 2t < V (g = (2t − V )/V < 0), a quantum
disordered phase for 2t > V (g > 0) and a quantum critical
point at 2t = V (g = 0). A finite t⊥ will cause the ordered
phase to be extended to finite temperatures (with a critical
temperature Tc for the case of 2t = V ), with a first-order
phase boundary ending at a new quantum critical point (QCP)
gc = �c/V at T = 0 [19]. As for the simple TFIM [1], there
exists a ‘quantum critical’ region just above the QCP and to the
right of the ordered phase, with a crossover to the disordered
phase at finite T . This is shown schematically in the T –g phase
diagram given below in figure 4. The transition belongs to the
3D Ising universality class while the QCP belongs to the 4D
Ising universality class [39].

In the following, we compute, via the RPA method, the
quantities gc at T = 0, Tc for the case of g ≡ �/V = 0,
the shape of the phase boundary near the QCP, the dynamical

Figure 4. The T –g phase diagram for the case of many TFIM
systems coupled by a transverse coupling t⊥ (or U⊥). The T = 0
ordered phase of the uncoupled TFIM is now extended, with a phase
boundary which has a value Tc for the model at g = 0 and a T = 0
quantum critical point (QCP) at g ≡ gc. The hashed region
immediately to the right of the ordered phase and just above the QCP
is the gapless quantum critical region (described in the text). The
dashed line represents a finite T crossover from the quantum critical
region to a disordered phase.

spin susceptibility χ(ω, k, �k⊥) at the QCP as well as the
dispersion in the transverse directions for small t⊥ and close
to the QCP [19]. We focus our attention mainly on, and in the
neighbourhood of, the QCP in order to stress the role played
by the critical quantum fluctuations in determining the physics
of deconfinement and dimensional crossover in our system. In
this, we are aided by the integrability and conformal invariance
of the TFIM model for 2t = V , t⊥ = 0 [21, 22, 1]; this allows
us to exploit the nonperturbative results for a single TFIM
system (as long as � = |2t − V | � 1), while dealing with the
physics of the transverse couplings at a mean-field level. At the
same time, the spectrum and dispersion deep inside the ordered
phase also proves to be fascinating [19]. Specifically, it has
been demonstrated that far from the transition line, dispersion
in the transverse directions is very weak (i.e. the spectrum
is nearly one-dimensional), and a hidden E8 symmetry of
the underlying exactly solvable model [40] gives rise to a
spectrum of eight massive particles (three of which should be
experimentally observable).

We begin by computing the critical value of the transverse
coupling gc at T = 0. For this, we can use the expression for
slightly off-critical χ1D for the case when the mass of the single
TFIM system is very small (m = �c � 1). This, for small ω,
is given by

χ1D(ω, k) � Z0V (�c/V )1/4

ω2 − (vk)2 −�2
c

(19)

where the velocity v = Vα (where α is the lattice spacing) and
Z0 = 1.8437. Then, from the divergence of the susceptibility
of the coupled system, χ(ω, k, �k⊥)

χ−1
1D (ω, k) = z⊥t⊥(�k⊥ = 0), (20)

we get, for the case of ω = 0 = k,

V

Z0
g7/4

c ≈ z⊥t⊥ (21)
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where we have dropped the argument of �k⊥ = 0 in t⊥ for the
sake of convenience. Thus, we get

gc ≈ c1

(
z⊥t⊥

V

)4/7

(22)

where the constant c1 = Z 4/7
0 = 1.42. Precisely the same

expression for the mass in the ordered phase and very close
to the QCP, � = gcV , is also obtained by carrying out a
self-consistent treatment of the effective magnetic field, h =
z⊥t⊥〈τ x 〉 in the TFIM for a single chain. For this, one uses
the slightly off-critical susceptibility for the 1D TFIM given
earlier (equation (19)) with the mass � replaced by �(1 +
(h/V )2) [41]. From this result, the authors of [19] concluded
that the dispersion in the transverse directions in the ordered
phase and close to the QCP is much stronger than that deep in
the ordered phase.

To calculate the Tc for the case of g = 0, we use χ1D(ω =
0, k = 0) at finite T

χ1D(ω = 0, k = 0) = c2

V

(
2πT

V

)−7/4

(23)

where the constant c2 = sin(π/8)B2(1/16, 7/8) and B(x, y) is
the Euler beta function. Thus, we find, by using equation (20)

Tc

V
= c3

(
z⊥t⊥

V

)4/7

(24)

where the constant c3 = c2/(2π) = 2.12. Further, we can
also compute the susceptibility χ for the coupled system at
the QCP for small �k⊥ by using the relation for the slightly
off-critical χ1D given earlier, equation (19), together with the
relation �2

c = g1/4
c V t⊥ in equation (17), giving

χ(ω, k, �k⊥) ∼ Z0V g1/4
c

ω2 − (vk)2 − (�v⊥ · �k⊥)2
, (25)

where |�v⊥|2 = (Z0V g1/4
c /2)d2t⊥(�k⊥ = 0)/d�k2

⊥ is gained by
a Taylor expansion to second order [19]. Further, the shape of
the phase boundary at low T can be determined by using the
χ1D of the TFIM at low T [1]

χ1D(ω, k) = Z0(α�/v)
1/4

(ω + i/τψ)2 − (vk)2 −�2
, (26)

where τψ = π
2T e�/T is the dephasing time due to quantum

fluctuations. Then, for ω = 0 = k in χ1D, the equation (20)
gives

ln T − �

T
= ln m + ln�, (27)

where � = π
2 (

Z0t⊥
g7/4 V − 1)1/2. The expression (27) given above

has an approximate solution [19]

Tc = �

ln(1/�)− ln ln(1/�)
. (28)

This relation gives us the shape of the phase boundary for
low T and close to the QCP. In this way, we have derived

the key features of the T –g phase diagram for the case of the
t⊥ transverse coupling (figure 4) given above. We can also
carry out an identical RPA calculation for the other transverse
coupling, U⊥, for the case when the single chain system is
critical, 2t = V , t⊥ = 0 in equation (11) [19]. This is
because this theory is again known to be integrable [40] and
falls in the same universality class as that of the TFIM. We can
thus determine an identical set of relations for (i) the critical
coupling gc at T = 0, (ii) the critical temperature Tc for the
case of g = 0, (iii) the susceptibility χ , (iv) dispersion in
the transverse directions as well as (v) the shape of the phase
boundary close to the QCP from those obtained earlier, but
with t⊥ replaced by U⊥ everywhere. In this way, we obtain
essentially the same T –g phase diagram for the case of the
U⊥ transverse coupling, with the only difference being the fact
that the spectrum of the ordered phase is now obtained from the
solution of the critical 1D TFIM in a longitudinal field [40].

We can see from the results given above that, as we
move along the interior of the ordered phase towards the phase
boundary, the excitation gaps decrease together with a gradual
growth of the dispersion in the transverse directions. At the
QCP, the spectrum is gapless and this is reflected in the fact
that the dynamical susceptibility χ at the QCP can have at most
logarithmic corrections. At low T , directly in the region above
the QCP, the spectrum and dynamics are mainly governed by
the quantum critical point while the thermal excitations are
described by the associated continuum quantum-field theory.
By this we mean that for energy scales given by ω � kBT ,
the system still resembles a quantum critical one in this region
of the phase diagram while for ω � kBT , a relaxation of
the dynamics (given by τ−1

ψ ) caused by quantum fluctuations
sets in. The rapid growth of the dispersion in the transverse
directions close to the QCP is the physics of the dimensional
crossover in this system, while the vanishing of all mass gaps
at the QCP is the physics of deconfinement. These results echo
our earlier finding of the critical phase in the phase diagram
of the two-leg TFIM system by starting from the Ṽ ordered
phase and increasing t⊥. While the integrability of the TFIM
allows us to make considerable progress in computing various
quantities, the role of the QCP in the mechanism responsible
for the dimensional crossover and deconfinement appear to be
robust. These results lead us, therefore, to the conclusion that
critical quantum fluctuations associated with a QCP can quite
generically cause such critical (gapless) phases to emerge in
higher dimensions from the ordered (gapped) phases of lower-
dimensional systems when coupled to one another.

4. Comparison with recent numerical works

We present here a brief discussion of the relevance of our work
to some numerical investigations that have been carried out
on two-leg ladder systems as well as coupled TFIM systems.
Vojta et al [42] studied the problem of a strongly correlated
electronic problem at 1/4-filling and with extended Hubbard
interactions (keeping only an nn repulsion) using the DMRG
method. The phase diagram they obtained contains several
phases with charge and/or spin excitation gaps. While a
comparison of our work with this study is hindered by the fact
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that the DMRG analysis does not have the crucial element of
the nnn repulsion (V2 in our work), figure 2 of that work reveals
that for the case of U � V1 > t , the authors indeed find
a charge-ordered CDW state (i.e. the Wigner charge-ordered
state of [12]) with an excitation gap in the spin sector as
well. This is in conformity with our finding of a Wigner
charge-ordered state with a spin gap for the case of the Uρ

coupling being the most relevant under RG. Further, the t⊥ of
that study corresponds to the single-particle hopping between
the legs while our work has focused on the effects of two-
particle hopping. Finally, with the on-site Hubbard coupling,
U , being the largest in the problem, we are unable to see any
phase-separated state in our phase diagram (as observed by
Vojta et al).

In a slightly earlier work, Riera et al [43] studied the
case of 1/4-filled chain/ladder Hubbard and t–J systems, but
which also include Holstein and/or Peierls-type couplings to
the underlying lattice. Their findings reveal co-existing charge
and spin orders in both chain and ladder systems. Specifically,
for the case of their chain system, by keeping only on-site and
nn repulsion together with an on-site Holstein-type coupling of
the electronic density to a phonon field, their phase diagrams
(figures 4) reveal separate phases with Wigner as well as
Peierls-type charge order. This is in keeping with our findings,
but the origins of the Peierls order in the two cases are different:
in our work, it originates from the competition of the nnn
coupling V2 with the nn coupling V1, while in their work,
it needs the Holstein coupling to the lattice. Riera et al
find a similar phase diagram (figures 5) for the case of an
extended t–J model (i.e. including nnn t and J couplings)
with a Holstein coupling. The addition of a Peierls-type
coupling leads to a spin-Peierls instability, i.e. the formation
of a dimerized spin order, which coexists with the Peierls-
type charge order. Again, while this matches our findings,
the origins are different. Qualitatively similar conclusions are
also reached by the authors in their study of an anisotropic
two-leg t–J ladder with an extended on-chain nn coupling and
Holstein-/Peierls-type lattice couplings (figures 2 and 3).

Finally, we comment on the very recent DMRG studies
of Konik et al [44] on coupled TFIM systems in an effort at
studying 2D coupled arrays of 1D systems. By starting with
a reliable spectrum truncation procedure for a single TFIM
chain (which relies on the underlying continuum 1D theory
being either conformally invariant or gapped but integrable),
the authors then implement an improvement of their DMRG
algorithm using first-order perturbative RG arguments. Their
results for a U⊥ coupling of the TFIM chains confirms the
accuracy of the RPA analysis of [19] and the present work
in computing quantities like the single chain excitation gap
(which is found to vanish at a critical U⊥) and dispersion
of excitations in the coupled system as a function of U⊥.
Their results indicate that the RPA method and the DMRG
analysis agree very well up to values of U⊥ of the order of
the gap. This method also appears to give accurate values of
critical exponents related to the ordering transition. Thus, this
numerical approach appears to provide a confirmation of the
interplay of the QCP in the TFIM and the transverse coupling
in driving the dimensional crossover and deconfinement

transition. Such an approach, therefore, holds much promise
for the numerical investigations of such phenomena in systems
with similar ingredients.

5. Conclusions

To conclude, we have studied a model of strongly correlated
coupled quasi-1D systems at 1/4-filling using an effective
pseudospin TFIM model. Using a bosonization and
RG analysis for a two-leg ladder model, we find two
different types of charge-/spin-ordered ground states at 1/4-
filling. Transverse bond-fermion hopping is found to
stabilize a new, gapped (insulating) phase characterized by
interchain two-particle coherence of a type resembling orbital
antiferromagnetism [29, 18]. The spin fluctuations are
described by a S = 1/2 Heisenberg ladder-type model
for all cases studied here: the spin excitations are always
massive. Away from this filling, either intra-or interchain
superconductivity in a gapped spin background is found to
be the stable ground state. We also find the existence of
an intermediate gapless phase lying in between two gapped,
charge-ordered phases (characterized by the relevant couplings
Ṽ and t⊥ respectively) in the RG phase diagram of our model.

We followed this up with an RPA analysis of the case when
many such effective TFIM systems are coupled. We find that
a transverse bond-fermion (i.e. two-particle) hopping coupling
causes the ordered phase to extend to finite temperatures, with
the phase boundary ending at a T = 0 QCP. Interestingly,
the critical quantum fluctuations at the QCP, together with the
transverse coupling t⊥, are found to drive a deconfinement
transition (at T = 0) together with a dimensional crossover
characterized by strong dispersion of the excitations of any
single TFIM into the transverse directions. The gapless higher-
dimensional system in the quantum critical region lying just
above the QCP is in conformity with our finding of a critical
phase in the two-leg ladder model driven by t⊥ discussed
above. Similar conclusions are also reached for the effects of
the transverse coupling U⊥ on effective TFIM chains which are
critical. The mechanism driving the dimensional crossover and
deconfinement appear to be generic and lead us to believe that
a similar mechanism should exist for the case of other quantum
critical systems in lower dimensions when coupled to one
another. Our present analyses are, however, especially relevant
to coupled chain systems like the TMTSF organic systems as
well as coupled ladder systems like Sr14−xCaxCu24O41 and
α-NaV2O5 or β-Na0.33V2O5 (a superconductor) which exhibits
charge/spin long-range order at x = 0 and superconductivity
beyond, under pressure and/or doping [2, 3].
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